易教网-合肥家教
当前城市:合肥 [切换其它城市] 
hf.eduease.com 家教热线请家教热线:400-6789-353 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网合肥家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造合肥地区请家教,做家教,找家教的专业平台,敬请致电:400-6789-353

当前位置:家教网首页 > 合肥家教网 > 外语学习 > 双语:你是什么性格?看你的网络头像就知道

双语:你是什么性格?看你的网络头像就知道

【来源:易教网 更新时间:2018-06-21

Is your profile photo bright and cheery, or is it a brooding work of social media art?

你的头像照片明亮愉快吗?抑或是社交媒体艺术孕育的成果?

According to a new study, these distinctions contain key clues about your personality and can reveal whether you’re conscientious, extraverted, or even neurotic.

根据一项新研究,这些差别隐藏着关于你性格的关键线索,可以透露出你是尽责型,外向型,还是神经质的人。

Using thousands of Twitter profile pictures, an international team of researchers found that personality traits can be accurately predicted based on differences in aesthetic and facial presentation.

一个跨国研究团队观察了几千张推特个人资料里的头像照片,发现基于美学和面部展示方式的差异,可以准确推测性格特征。

In a recent paper, Analyzing Personality through Social Media Profile Picture Choice, researchers analysed a data set of more than 66,000 Twitter users, and collected up to 3,200 of the most recent tweets for each person.

在最近发表的研究论文——《通过社交媒体头像选择分析用户性格》中,研究者们分析了6.6万推特用户的数据,收集了每个用户最近写的3200条推特(如果有这么多的话)。

Along with this, 434 Twitter users were given a psychological survey to determine their scores among the Big Five personality traits.

除此之外,434名推特用户接受了心理测验,根据结果来确定他们是五大人格特质中的哪一个。

These include extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience.

这些特质包括外向型、宜人型、尽责型、神经质型和开放型。

Profile pictures are likely an important indicator of personality, as they are chosen by the user to represent their online persona, the researchers explain.

研究人员解释道,头像照片很可能是人格的重要指标,因为用户选择它们来代表自己在网上的形象。

So, they looked only at profile photos, and divided the features into two categories: general image features and stylistic facial features.

因此,他们只看头像照片,并把照片特征分为两类:一类是一般的图像特征,一类是充满个人风格的脸部特征。

The researchers analysed the differences in colour, composition, general type (meaning number of faces included), demographics, facial presentation, and expression.

研究人员分析了颜色、构图、大体形式(就是照片上有多少张脸)、人口学特征,脸部展示以及表情上的差异。

Then, they investigated the correlation between the personality analyses and the features of each image.

然后他们探究了人格分析和每张图片的特征之间的相关性。

Twitter users that have a profile picture with higher aesthetic quality – increased contrast, sharpness, saturation, less blur – were associated with open personalities, the team found.

研究团队发现,头像有更高审美价值的推特用户——图片对比度、清晰度、饱和度较高,模糊的较少,属于开放型人格。

This group was also most likely to have a profile picture that contained something other than a face, indicating ‘non-conformance,’ they explain.

除了脸,这类人的头像更有可能包含其它事物,暗示他们“不随大流”,他们解释道。

But, they were also less colourful, and the facial expressions were higher in negative emotion, particularly anger.

但是,他们的头像没那么绚丽多彩,而且脸部表情表现出更多的消极情绪,尤其是愤怒。

As for conscientious users, the researchers found profile pictures were more colourful, natural, and bright.

至于尽责型的用户,研究人员发现他们的头像照片更绚丽多彩、自然、明亮。

These users were highly correlated with positive mood expressions, like smiling, and expressed the most emotions out of all the five traits.

这些用户与积极表情高度相关,比如微笑,而且是五大人格中情感表达最丰富的一类人。

Extraverts were found to have the most colourful images, and tended to have profile pictures that contain multiple people.

研究发现,外向型的人头像色彩最丰富,而且头像照片上往往有好几个人。

Users associated with agreeableness were also found to have colourful photos, which were blurry and bright.

宜人型的用户头像色彩也比较多,明亮但比较模糊。

Overall, these users express positive emotions.

总而言之,这些用户表达的情感都比较积极。

Neurotic users, they found, tended to have simpler, uncolourful images.

他们发现,神经质型的用户头像往往更简单,色彩更单调。

They were also more likely to opt not to present a face in their photos, and had an overall lack of positive emotions when a face was shown.

他们也更倾向于选择没有正脸的照片,即使有,脸上也全然没有积极的表情。

Using this information, researchers say profile pictures can be harnessed to make predictions with ‘robust accuracy.’

研究人员表示,了解这些信息,就可以利用头像对性格做出“靠谱的”预测。

Vocabulary

brood: 冥思苦想;孵化

conscientious: 认真的;尽责的

demographics: 人口统计学


-更多-

最新教员

  1. 黄教员 合肥学院 视觉传达设计
  2. 张老师 尚无职称等级 数学
  3. 水教员 合肥师范学院 学前教育
  4. 张教员 天津财经大学 金融
  5. 骆教员 安徽理工大学 测控技术与仪器
  6. 施教员 安徽科技 机械
  7. 李教员 安徽大学 应用数学
  8. 王教员 安徽新华学院 人工智能
  9. 谭教员 合肥工业大学 自动化